Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Korean Journal of Radiology ; : 1110-1118, 2018.
Article in English | WPRIM | ID: wpr-718938

ABSTRACT

OBJECTIVE: To perform a meta-analysis to quantitatively assess functional magnetic resonance imaging (MRI) in the diagnosis of locally recurrent prostate cancer. MATERIALS AND METHODS: A comprehensive search of the PubMed, Embase, Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews was conducted from January 1, 1995 to December 31, 2016. Diagnostic accuracy was quantitatively pooled for all studies by using hierarchical logistic regression modeling, including bivariate modeling and hierarchical summary receiver operating characteristic (HSROC) curves (AUCs). The Z test was used to determine whether adding functional MRI to T2-weighted imaging (T2WI) results in significantly increased diagnostic sensitivity and specificity. RESULTS: Meta-analysis of 13 studies involving 826 patients who underwent radical prostatectomy showed a pooled sensitivity and specificity of 91%, and the AUC was 0.96. Meta-analysis of 7 studies involving 329 patients who underwent radiotherapy showed a pooled sensitivity of 80% and specificity of 81%, and the AUC was 0.88. Meta-analysis of 11 studies reporting 1669 sextant biopsies from patients who underwent radiotherapy showed a pooled sensitivity of 54% and specificity of 91%, and the AUC was 0.85. Sensitivity after radiotherapy was significantly higher when diffusion-weighted MRI data were combined with T2WI than when only T2WI results were used. This was true when meta-analysis was performed on a per-patient basis (p = 0.027) or per sextant biopsy (p = 0.046). A similar result was found when ¹H-magnetic resonance spectroscopy (¹H-MRS) data were combined with T2WI and sextant biopsy was the unit of analysis (p = 0.036). CONCLUSION: Functional MRI data may not strengthen the ability of T2WI to detect locally recurrent prostate cancer in patients who have undergone radical prostatectomy. By contrast, diffusion-weight MRI and ¹H-MRS data may improve the sensitivity of T2WI for patients who have undergone radiotherapy.


Subject(s)
Humans , Area Under Curve , Biopsy , Diagnosis , Logistic Models , Magnetic Resonance Imaging , Prostate , Prostatectomy , Prostatic Neoplasms , Radiotherapy , Recurrence , ROC Curve , Sensitivity and Specificity , Spectrum Analysis
2.
Chinese Medical Journal ; (24): 2167-2172, 2011.
Article in English | WPRIM | ID: wpr-338493

ABSTRACT

<p><b>BACKGROUND</b>Sodium valproate inhibits proliferation in neuroblastoma and glioma cells, and inhibits proliferation and induces apoptosis in hepatoblastoma cells. Information describing the molecular pathways of the antitumor effects of sodium valproate is limited; therefore, we explored the mechanisms of action of sodium valproate in the human hepatoblastoma cell line, HepG2.</p><p><b>METHODS</b>The effects of sodium valproate on the proliferation of HepG2 cells were evaluated by the Walsh-schema transform and colony formation assays. Sodium valproate-induced apoptosis in HepG2 cells was investigated with fluorescence microscopy to detect morphological changes; by flow cytometry to calculate DNA ploidy and apoptotic cell percentages; with Western blotting analyses to determine c-Jun N-terminal kinases (JNK), p-JNK, Bcl-2, Bax, and caspase-3 and -9 protein expression levels; and using JC-1 fluorescence microscopy to detect the membrane potential of mitochondria. Statistical analyses were performed using one-way analysis of variance by SPSS 13.0 software.</p><p><b>RESULTS</b>Our results indicated that sodium valproate treatment inhibited the proliferation of HepG2 cells in a dose-dependent manner. Sodium valproate induced apoptosis in HepG2 cells as it: caused morphologic changes associated with apoptosis, including condensed and fragmented chromatin; increased the percentage of hypodiploid cells in a dose-dependent manner; increased the percentage of annexin V-positive/propidium iodide-negative cells from 9.52% to 74.87%; decreased JNK and increased phosphate-JNK protein expression levels; reduced the membrane potential of mitochondria; decreased the ratio of Bcl-2/Bax; and activated caspases-3 and -9.</p><p><b>CONCLUSION</b>Sodium valproate inhibited the proliferation of HepG2 cells, triggered mitochondria-dependent HepG2 cell apoptosis and activated JNK.</p>


Subject(s)
Humans , Apoptosis , Blotting, Western , Cell Proliferation , Flow Cytometry , Hep G2 Cells , Hepatoblastoma , Metabolism , JNK Mitogen-Activated Protein Kinases , Metabolism , Membrane Potential, Mitochondrial , Microscopy, Fluorescence , Mitochondria , Metabolism , Valproic Acid , Pharmacology
3.
Acta Pharmaceutica Sinica ; (12): 138-145, 2011.
Article in Chinese | WPRIM | ID: wpr-348985

ABSTRACT

In this study, the effects of apollon antisense oligodeoxynucleotide (ASODN) on the proliferation and apoptosis of human Lovo cells in vitro were investigated. Apollon ASODN was incubated with human colorectal Lovo cells for 48 h, the proliferation inhibition and the clone forming rates were detected by WST method and clone formation assay, respectively. The expression of apollon mRNA was analyzed by real time fluorescent quantitative reverse transcription polymerase chain reaction. The percentage of apoptotic cells and cell cycle distribution were determined by flow cytometry. The morphology of apoptotic cells was examined by fluorescence microscope. Lovo cells incubated with apollon ASODN combined with 5-fluorouracil (5-FU), cisplatin (DDP) or epirubicin (EPI) of different concentrations, cell proliferation inhibition rates were detected with WST method and IC50 was calculated. It was found that ASODN targeting apollon gene could all suppress the growth of Lovo cells and induce apoptosis of these cells significantly (P < 0.05). After Lovo cells treated with apollon ASODN for 48 hours, the expression of the apollon mRNA level was suppressed significantly. And a marked concentration-dependent decline of cell proliferation and clone forming, increasing of cell apoptosis levels were observed. The percentage of G0/G1 phage cells was abated and that of S phage cells was increased and the Lovo cells arrested at S phage of the cell cycle detected with flow cytometry. Many Lovo cells stained with Hoechst 33258 exhibited apoptotic morphology such as cell shrinkage, nuclear condensation and nuclear fragmentation. Cell proliferation inhibition was detected and their chemo-therapeutic effects of 5-FU, DDP and EPI on Lovo cells combined with apollon ASODN (0.08 micromol x L(-1)) were enhanced independently compared with single 5-FU, DDP and EPI groups, and the sensitivity enhanced about 2.58, 4.47, and 5.33 times respectively. It can be concluded that ASODN targeting apollon can suppress the expression of apollon mRNA, and inhibit the proliferation, induce apoptosis, arrest cell cycle at S phase of colorectal cancer Lovo cells in vitro and enhance the chemo-sensitivity to 5-FU, DDP and EPI.


Subject(s)
Humans , Antineoplastic Agents , Pharmacology , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cisplatin , Pharmacology , Colonic Neoplasms , Metabolism , Pathology , Epirubicin , Pharmacology , Fluorouracil , Pharmacology , Gene Knockdown Techniques , Inhibitor of Apoptosis Proteins , Genetics , Metabolism , Inhibitory Concentration 50 , Oligodeoxyribonucleotides, Antisense , Genetics , RNA, Messenger , Metabolism , Sensitivity and Specificity , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL